Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.279
1.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696360

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Agriculture , Greenhouse Gases , Methane , Ponds , Methane/analysis , Greenhouse Gases/analysis , Australia , Environmental Monitoring , Climate Change
2.
J Hazard Mater ; 471: 134294, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38669928

Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.


Carbon Dioxide , Methane , Microplastics , Volatile Organic Compounds , Carbon Dioxide/analysis , Volatile Organic Compounds/analysis , Methane/analysis , Microplastics/analysis , Soil/chemistry , Ecosystem , Soil Pollutants/analysis , Greenhouse Gases/analysis , Environmental Monitoring , Biodegradation, Environmental , Air Pollutants/analysis
3.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656670

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
4.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583627

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Methane , Nitrous Oxide , Peroxides , Water Quality , Methane/analysis , Nitrous Oxide/analysis , Peroxides/analysis , Water Pollutants, Chemical/analysis , Greenhouse Gases/analysis
5.
Sci Total Environ ; 928: 172452, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38615757

Greenhouse gas (GHG) fluxes from peatland soils are relatively well studied, whereas tree stem fluxes have received far less attention. Simultaneous year-long measurements of soil and tree stem GHG fluxes in northern peatland forests are scarce, as previous studies have primarily focused on the growing season. We determined the seasonal dynamics of tree stem and soil CH4, N2O and CO2 fluxes in a hemiboreal drained peatland forest. Gas samples for flux calculations were manually collected from chambers at different heights on Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees (November 2020-December 2021) and analysed using gas chromatography. Environmental parameters were measured simultaneously with fluxes and xylem sap flow was recorded during the growing season. Birch stems played a greater role in the annual GHG dynamics than spruce stems. Birch stems were net annual CH4, N2O and CO2 sources, while spruce stems constituted a CH4 and CO2 source but a N2O sink. Soil was a net CO2 and N2O source, but a sink of CH4. Temporal dynamics of stem CH4 and N2O fluxes were driven by isolated emissions' peaks that contributed significantly to net annual fluxes. Stem CO2 efflux followed a seasonal trend coinciding with tree growth phenology. Stem CH4 dynamics were significantly affected by the changes between wetter and drier periods, while N2O was more influenced by short-term changes in soil hydrologic conditions. We showed that CH4 emitted from tree stems during the wetter period can offset nearly half of the soil sink capacity. We presented for the first time the relationship between tree stem GHG fluxes and sap flow in a peatland forest. The net CH4 flux was likely an aggregate of soil-derived and stem-produced CH4. A dominating soil source was more evident for stem N2O fluxes.


Betula , Environmental Monitoring , Forests , Greenhouse Gases , Methane , Soil , Greenhouse Gases/analysis , Soil/chemistry , Methane/analysis , Seasons , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Picea , Plant Stems , Air Pollutants/analysis
6.
Sci Total Environ ; 929: 172599, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38657807

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is a biobased and biodegradable polymer that could efficiently replace fossil-based plastics. However, its widespread deployment is slowed down by the high production cost. In this work, the techno-economic assessment of the process for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from low-cost substrates, such as methane and valeric acid derived from the anaerobic digestion of organic wastes, is proposed. Several strategies for cost abatement, such as the use of a mixed consortium and a line for reagent recycling during downstream, were adopted. Different scenarios in terms of production, from 100 to 100,000 t/y, were analysed, and, for each case, the effect of the reactor volume (small, medium and large size) on the selling price was assessed. In addition, the effect of biomass concentration was also considered. Results show that the selling price of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is minimum for a production plant with 100,000 t/y capacity, accounting for 18.4 €/kg, and highly influenced by the biomass concentration since it can be reduced up to 8.6 €/kg by increasing the total suspended solids from 5 to 30 g/L, This adjustment aligns the breakeven point of PHBV with the reported average commercial price.


Biomass , Bioreactors , Fatty Acids, Volatile , Methane , Polyesters , Polyhydroxybutyrates , Methane/analysis , Fatty Acids, Volatile/analysis , Biopolymers
7.
Waste Manag ; 181: 11-19, 2024 May 30.
Article En | MEDLINE | ID: mdl-38574688

Mattresses are a difficult waste to manage in landfills due to their large volume and low density. Pyrolysis treatment could reduce its volume while producing fuel or products valuable for the chemical industry. Pressurized pyrolysis at 400, 450, and 500 °C is carried out in a lab-scale autoclave at initial pressures 4.2, 8.4, and 16.8 bar. Product gas yield increases slightly along with elevated pressure as well as temperature. However, beyond 8.4 bar the initial pressure makes no discernible differences. CO and CO2 are the major gas species followed by CH4. CO contributes the most to the product gas energy content followed by C3 species, C2H6, and H2. Calculated energy content (heating value) is between 2 and 15 MJ·Nm-3. In terms of product gas energy content, low pressure pyrolysis is favorable over high pressure pyrolysis. According to integration areas of chromatographic measurements the liquid phase contains up to 25 % of N-compounds, with benzonitrile being the most abundant, followed by toluene, o-xylene, and ethylbenzene. The solid char maintains constant properties across operating conditions, with carbon and energy contents of approximately 75 wt% and 30 MJ·kg-1, respectively.


Pyrolysis , Waste Disposal Facilities , Refuse Disposal/methods , Pressure , Waste Management/methods , Methane/analysis , Methane/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/chemistry
8.
Sci Rep ; 14(1): 8706, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622195

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Charcoal , Greenhouse Gases , Oryza , Soil/chemistry , Global Warming , Agriculture/methods , Greenhouse Gases/analysis , Oryza/chemistry , Methane/analysis , Carbon , Nitrous Oxide/analysis
9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646755

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Ants , Forests , Methane , Soil , Tropical Climate , Methane/analysis , Methane/metabolism , Animals , Soil/chemistry , China , Soil Microbiology , Seasons
10.
Sci Total Environ ; 927: 171994, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38561130

Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.


Forests , Global Warming , Methane , Soil Microbiology , Soil , Methane/metabolism , Methane/analysis , Soil/chemistry , Water , Temperature
11.
Environ Sci Technol ; 58(15): 6575-6585, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38564483

Wide-area aerial methods provide comprehensive screening of methane emissions from oil and gas (O & G) facilities in production basins. Emission detections ("plumes") from these studies are also frequently scaled to the basin level, but little is known regarding the uncertainties during scaling. This study analyzed an aircraft field study in the Denver-Julesburg basin to quantify how often plumes identified maintenance events, using a geospatial inventory of 12,629 O & G facilities. Study partners (7 midstream and production operators) provided the timing and location of 5910 maintenance events during the 6 week study period. Results indicated three substantial uncertainties with potential bias that were unaddressed in prior studies. First, plumes often detect maintenance events, which are large, short-duration, and poorly estimated by aircraft methods: 9.2 to 46% (38 to 52%) of plumes on production were likely known maintenance events. Second, plumes on midstream facilities were both infrequent and unpredictable, calling into question whether these estimates were representative of midstream emissions. Finally, 4 plumes attributed to O & G (19% of emissions detected by aircraft) were not aligned with any O & G location, indicating that the emissions had drifted downwind of some source. It is unclear how accurately aircraft methods estimate this type of plume; in this study, it had material impact on emission estimates. While aircraft surveys remain a powerful tool for identifying methane emissions on O & G facilities, this study indicates that additional data inputs, e.g., detailed GIS data, a more nuanced analysis of emission persistence and frequency, and improved sampling strategies are required to accurately scale plume estimates to basin emissions.


Air Pollutants , Air Pollutants/analysis , Aircraft , Methane/analysis , Natural Gas/analysis
12.
J Environ Manage ; 357: 120736, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574706

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
13.
J Environ Manage ; 357: 120828, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579473

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Bioreactors , Water , Humans , Animals , Swine , Anaerobiosis , Water/analysis , Feces , Digestion , Methane/analysis
14.
PLoS One ; 19(4): e0297784, 2024.
Article En | MEDLINE | ID: mdl-38603686

Based on the integrated model of Super-SBM model, spatial Durbin model (SDM) and Grey neural network model, this paper analyzes the panel data of various provinces in China from multiple angles and dimensions. It was found that there were significant differences in eco-efficiency between organic rice production and conventional rice production. The response of organic rice to climate change, the spatial distribution of ecological and economic benefits and the impact on carbon emission were analyzed. The results showed that organic rice planting not only had higher economic benefits, but also showed a rising trend of ecological benefits and a positive feedback effect. This finding highlights the importance of organic rice farming in reducing carbon emissions. Organic rice farming effectively reduces greenhouse gas emissions, especially carbon dioxide and methane, by improving soil management and reducing the use of fertilizers and pesticides. This has important implications for mitigating climate change and promoting soil health and biodiversity. With the acceleration of urbanization, the increase of organic rice planting area shows the trend of organic rice gradually replacing traditional rice cultivation, further highlighting the potential of organic agriculture in emission reduction, environmental protection and sustainable agricultural production. To this end, it is recommended that the Government implement a diversified support strategy to encourage technological innovation, provide guidance and training, and raise public awareness and demand for organic products. At the same time, private sector participation is stimulated to support the development of organic rice cultivation through a public-private partnership model. Through these measures, further promote organic rice cultivation, achieve the dual goals of economic benefits and environmental benefits, and effectively promote the realization of double carbon emission reduction targets.


Greenhouse Gases , Oryza , Agriculture/methods , Soil , Organic Agriculture , China , Methane/analysis , Fertilizers
15.
Sci Total Environ ; 926: 172133, 2024 May 20.
Article En | MEDLINE | ID: mdl-38569960

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Oryza/metabolism , Agriculture/methods , Global Warming , Crop Production , Nitrous Oxide/analysis , Methane/analysis , Soil , China
16.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38569319

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Fabaceae , Greenhouse Gases , Vegetables/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Nitrates , Carbon , Soil , Methane/analysis , Nitrogen/metabolism , Carbon Dioxide/analysis , Agriculture
17.
Chemosphere ; 357: 142077, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643843

Organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) are the most produced organic waste streams in urban centres. Their anaerobic co-digestion (AcoD) allows to generate methane (CH4) and digestate employable as renewable energy source and soil amendment, respectively, fully in accordance with circular bioeconomy principles. However, the widespread adoption of such technology is limited by relatively low CH4 yields that fail to bridge the gap between benefits and costs. Among strategies to boost AcoD of OFMSW and WAS, use of conductive materials (CMs) to promote interspecies electron transfer has gained increasing attention. This paper presents one of the few experimental attempts of investigating the effects of four different carbon(C)-based CMs (i.e., granular activated carbon - GAC, graphite - GR, graphene oxide - GO, and carbon nanotubes - CNTs) separately added in semi-continuous AcoD of OFMSW and thickened WAS. The presence of C-based CMs has been observed to improve CH4 yield of the control process. Specifically, after 63 days of operation (concentrations of GAC and GR of 10.0 g/L and of GO and CNTs of 0.2 g/L), 0.186 NL/gVS, 0.191 NL/gVS, 0.203 NL/gVS, and 0.195 NL/gVS of CH4 were produced in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.177 NL/gVS produced in the control process. Likewise, at the end of the test (i.e., after 105 days at concentrations of C-based CMs half of the initial ones), CH4 yields were 0.193 NL/gVS, 0.201 NL/gVS, 0.211 NL/gVS, and 0.206 NL/gVS in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.186 NL/gVS of the control process. Especially with regard to GR, GO, and CNTs, results obtained in the present study represent a significant advance of the knowledge on the effects of such C-based CMs to realistic and scalable AD process conditions respect to previous literature.


Carbon , Methane , Refuse Disposal , Sewage , Solid Waste , Sewage/chemistry , Anaerobiosis , Methane/analysis , Solid Waste/analysis , Carbon/chemistry , Carbon/analysis , Refuse Disposal/methods , Graphite/chemistry , Bioreactors , Nanotubes, Carbon/chemistry , Charcoal/chemistry
18.
Environ Sci Technol ; 58(17): 7393-7402, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38622815

Peatlands are recognized as crucial greenhouse gas sources and sinks and have been extensively studied. Their emissions exhibit high spatial heterogeneity when measured on site using flux chambers. However, the mechanism by which this spatial variability behaves on a very fine scale remains unclear. This study investigates the fine-scale spatial variability of greenhouse gas emissions from a subantarctic Sphagnum peatland bog. Using a recently developed skirt chamber, methane emissions and ecosystem respiration (as carbon dioxide) were measured at a submeter scale resolution, at five specific 3 × 3 m plots, which were examined across the site throughout a single campaign during the Austral summer season. The results indicated that methane fluxes were significantly less homogeneously distributed compared with ecosystem respiration. Furthermore, we established that the spatial variation scale, i.e., the minimum spatial domain over which notable changes in methane emissions and ecosystem respiration occur, was <0.56 m2. Factors such as ground height relative to the water table and vegetation coverage were analyzed. It was observed that Tetroncium magellanicum exhibited a notable correlation with higher methane fluxes, likely because of the aerenchymatous nature of this species, facilitating gas transport. This study advances understanding of gas exchange patterns in peatlands but also emphasizes the need for further efforts for characterizing spatial dynamics at a very fine scale for precise greenhouse gas budget assessment.


Greenhouse Gases , Methane , Wetlands , Greenhouse Gases/analysis , Methane/analysis , Carbon Dioxide/analysis , Soil/chemistry , Ecosystem , Sphagnopsida , Environmental Monitoring
19.
Glob Chang Biol ; 30(5): e17301, 2024 May.
Article En | MEDLINE | ID: mdl-38687496

Streams are significant contributors of greenhouse gases (GHG) to the atmosphere, and the increasing number of stressors degrading freshwaters may exacerbate this process, posing a threat to climatic stability. However, it is unclear whether the influence of multiple stressors on GHG concentrations in streams results from increases of in-situ metabolism (i.e., local processes) or from changes in upstream and terrestrial GHG production (i.e., distal processes). Here, we hypothesize that the mechanisms controlling multiple stressor effects vary between carbon dioxide (CO2) and methane (CH4), with the latter being more influenced by changes in local stream metabolism, and the former mainly responding to distal processes. To test this hypothesis, we measured stream metabolism and the concentrations of CO2 (pCO2) and CH4 (pCH4) in 50 stream sites that encompass gradients of nutrient enrichment, oxygen depletion, thermal stress, riparian degradation and discharge. Our results indicate that these stressors had additive effects on stream metabolism and GHG concentrations, with stressor interactions explaining limited variance. Nutrient enrichment was associated with higher stream heterotrophy and pCO2, whereas pCH4 increased with oxygen depletion and water temperature. Discharge was positively linked to primary production, respiration and heterotrophy but correlated negatively with pCO2. Our models indicate that CO2-equivalent concentrations can more than double in streams that experience high nutrient enrichment and oxygen depletion, compared to those with oligotrophic and oxic conditions. Structural equation models revealed that the effects of nutrient enrichment and discharge on pCO2 were related to distal processes rather than local metabolism. In contrast, pCH4 responses to nutrient enrichment, discharge and temperature were related to both local metabolism and distal processes. Collectively, our study illustrates potential climatic feedbacks resulting from freshwater degradation and provides insight into the processes mediating stressor impacts on the production of GHG in streams.


Os rios são grandes emissores de gases com efeito de estufa (GEE) para a atmosfera, e o crescente número de agentes de stress que degradam os rios pode exacerbar este processo, e constituir uma ameaça à estabilidade climática. No entanto, não é claro se o efeito dos impactos humanos nas concentrações de GEE na água está associado ao aumento do metabolismo local do rio (processos locais) ou ao aumento da produção de GEE nas zonas a montante dos rios ou nas zonas terrestres adjacentes (processos distais). A nossa hipótese é que os mecanismos que controlam os efeitos dos impactos humanos na emissão de GEE variam entre o dióxido de carbono (CO2) e o metano (CH4). A nossa previsão é que o CO2 responde principalmente a processos distais, enquanto o CH4 é mais influenciado por alterações no metabolismo local dos cursos de água. Para avaliar esta hipótese, medimos o metabolismo aquático e as concentrações de CO2 (pCO2) e CH4 (pCH4) em 50 rios que abrangem gradientes de enriquecimento em nutrientes, depleção de oxigénio, stress térmico, degradação da zona ribeirinha e caudal. Os nossos resultados indicam que estes agentes de stress tiveram efeitos aditivos no metabolismo e nas concentrações de GEE nos rios, e que as interações entre os agentes de stress tiveram pouca capacidade preditiva. O enriquecimento em nutrientes foi associado a um aumento da heterotrofia e pCO2, enquanto o pCH4 aumentou com a depleção de oxigénio e com a temperatura da água. O caudal estava positivamente correlacionado com a produção primária, a respiração e a heterotrofia, mas negativamente correlacionado com o pCO2. Os nossos modelos indicam que as concentrações equivalentes de CO2 podem duplicar em rios eutrofizados e com baixa concentração de oxigénio, em comparação com os rios oligotróficos e com águas bem oxigenadas. A aplicação de modelos de equações estruturais mostrou que os efeitos do enriquecimento em nutrientes e do caudal no pCO2 estavam relacionados com processos distais e não com o metabolismo local. Em contrapartida, as respostas do pCH4 ao enriquecimento de nutrientes, ao caudal e à temperatura estavam relacionadas tanto com o metabolismo local como com processos distais. O nosso estudo demonstra que a degradação dos rios e dos ecossistemas ribeirinhos pode ter efeitos negativos na estabilidade climática e fornece informação relevante sobre os processos biogeoquímicos que medeiam os impactos humanos na produção de GEE nos rios.


Carbon Dioxide , Greenhouse Gases , Methane , Rivers , Greenhouse Gases/analysis , Rivers/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Methane/analysis , Methane/metabolism , Climate Change , Temperature , Oxygen/analysis , Oxygen/metabolism
20.
Environ Sci Technol ; 58(11): 4948-4956, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38445593

Methane emissions from the oil and gas supply chain can be intermittent, posing challenges for monitoring and mitigation efforts. This study examines shallow water facilities in the US Gulf of Mexico with repeat atmospheric observations to evaluate temporal variation in site-specific methane emissions. We combine new and previous observations to develop a longitudinal study, spanning from days to months to almost five years, evaluating the emissions behavior of sites over time. We also define and determine the chance of subsequent detection (CSD): the likelihood that an emitting site will be observed emitting again. The average emitting central hub in the Gulf has a 74% CSD at any time interval. Eight facilities contribute 50% of total emissions and are over 80% persistent with a 96% CSD above 100 kg/h and 46% persistent with a 42% CSD above 1000 kg/h, indicating that large emissions are persistent at certain sites. Forward-looking infrared (FLIR) footage shows many of these sites exhibiting cold venting. This suggests that for offshore, a low sampling frequency over large spatial coverage can capture typical site emissions behavior and identify targets for mitigation. We further demonstrate the preliminary use of space-based observations to monitor offshore emissions over time.


Air Pollutants , Methane , Methane/analysis , Gulf of Mexico , Longitudinal Studies , Air Pollutants/analysis , Probability , Natural Gas
...